highline

It was the best of times, it was the worst of times…

Best

Taken at face value, this is just a really ballsy, really beautiful shot of somebody walking a tightrope/slackline over Yosemite Falls. Completely ignoring the fact that I generally have the balance of a member of Delta House (Animal House) on a Friday night, I wouldn’t do that on my most fearless day even if I could walk a razor straight line.

The rigging, however, is what I was most focused on. The line that the guy is walking on is anchored on terra firma on one side and is anchored off to another highline on the other side!!!

The deflection in the anchor highline looks to be practically nil. The forces of a highline pulling on a highline, especially one with very little deflection, are likely to be pretty darn high. I guess that it worked, so I shouldn’t take too much issue with it. But there are several things that I saw that gave me a bit of pause. Aside from the fact that it’s a highline attached to a highline, the floating anchor side is attached with either multiple slings or a doubled up sling. Regardless, it is presenting a hell of a tri load on the single carabiner used for the attachment.

Secondly, it doesn’t seem like the smartest idea to me to be cutting the trackline with a knife; especially with one so small, doesn’t lock, and isn’t tethered off. The release of tension on the anchor highline causes the predictable, violent release. The chances for that blade to cut something you’re hanging on is just too much risk for me… but nothing bad happened here, so maybe I’m just more risk averse. Maybe a happy compromise would have been cutting the line with some scissors or trauma shears. I’m curious why they had to cut the line at all, though. It had to get out to that point somehow prior to it being tensioned.

Regardless, it looked like a great time to be communing with nature while on rope.

Worst

A not so great communing with nature while on rope is summed up in this picture from India.

INDIA-NEPAL-WEATHER-FLOOD

Torrential rains in India this week caused some massive flooding and landslides that have left over 1000 people dead.  HERE is the story.

Nice use of two tracklines in order to keep the sag to a minimum and people out of the water. The slack control lines can be forgiven because, according to the article, these type of highlines were being used to transport multiple people to safety in a short amount of time.  A good trade off/ system analysis/ threat assessment in my opinion.

Pretty awesome video just posted on youtube from a Pat Rhodes class in Australia recently. While testing the “what ifs” of a trackline failure, video was taken of a prusik capturing the load on the horizontal control line. You can see smoke coming off of the prusik/rope interface after the trackline is failed. Because I wasn’t there and am only guessing: I wonder if instead of smoke, it is actually steam from the moisture in the rope being cooked off ? Either way, it is very cool to see. Thanks to Richard Delany and the Rope Test Lab for making this type of video available on their facebook page. There is a ton of excellent information and discussion going on there. Check them out!

While not quite as cool as the  Appalachian Flagpole (or a smoking prusik for that matter), this video from the manufacturer Kong shows something like an App Flag and Gin Pole hybrid. I like the technique of being able to hook your haul system to your gin pole. It’s not really mind blowing, but just another cool incremental advance in the world of rope rescue.

Roughly translated from the ancient Nordic from which it derives, it means: a polytribal gathering of rescue people. Okay… That might be a bit of creative license. IKAR stands for the International Council for Rescue and is located in Switzerland. You can find their website HERE.

Check out the full length review of what happened at this year’s IKAR meeting in Poland. One of the neat things that stood out to me was the team from Tyrol, which does around 2000 calls annually, was using 8mm Spectra ropes. They’re ultra static and have around a 7000lb breaking strength. As you can see and hear in the video, you can’t put a knot in it and all terminations have to be spliced. Apparently it works for them, though.

Thanks to Spokane FD tillerman, rope geek, family man, and all around nice guy Mike Forbes for alerting us to this video.

While we’re on a highline kick, check out some footage from this year’s IKAR (International Council of Alpine Rescue) in Poland . If you think that you have some pretty good rope mojo, check out the video below of a highline to highline transfer of a packaged victim after they did a counterbalance raise for the vertical control line.Talk about some great line management and setup to be able to accomplish this. Go to the 2:50 mark to get to the rope stuff.

Yeah, baby!

powersteeth

The 5:00 mark of THIS video shows how they got the trackline across. Looks like I found a legitimate excuse to buy a crossbow!

If you ever find yourself in the country of Peru and are offered a ride on highline, it might be in your best interest to politely decline. If the trackline failure that we posted a while ago HERE doesn’t convince you, perhaps the videos below will.

The first video of this event shows the accident and subsequent recovery of the victim. It is interesting to see how the highline started up through a piece of metal that was used as a high directional. A little ways into the video you can see that the HD collapsed at some point, but you don’t see where.

http://www.youtube.com/watch?v=PVTdpbUBjSE

This second video shows a different viewpoint that shows the HD failing right after the rescue package hits the lines; my guess is from the shock (not intended as a pun, but I suppose it is anyhow) loading. Also of note is what appears to be a multi (20!) point anchor that looks like it just goes to a bunch of guys holding each point. Pause the video around the :14 mark to see what I’m talking about.

http://www.youtube.com/watch?v=Ngr8DbOxkO0

Three points to note:

They were lowering the rescue package VERY fast and probably could not have communicated the “Stop” command in time, even if they saw the issue coming.

There was no horizontal control line for the down hill side. It wouldn’t have made a difference here, but there seems to be a lack of highline knowledge in Peru.

The people who set this trackline up apparently had no idea how to calculate the sag in their trackline that was needed to clear objects in their path and maintain a safe number on their (obviously) sketchy anchors and high directionals.

Does your team have the ability to calculate sag before setting up your trackline or is it a calibrated eyeball and more trackline tension that you rely on?