CMC has just released a new video highlighting the Multi-Purpose Device, more commonly known as the MPD. If you know me, you know that I am a huge fan of the MPD. While obvious benefits of it re pretty clear: one device for lowering, raising, and belay; I think that the real benefit for a rescue team or fire department is the rigging flexibility of the device.

What I mean by that is that the guy who is not a rope geek can safely and easily rig a system for lowering and raising with the same piece of equipment that the guru is using to rig multi track highlines and guiding lines. While I suppose this has always been the case, the MPD simplifies it immeasurably.

On the simple side of things, consider a simple lower over an edge. With a rack, if you didn’t measure your rope to the edge properly and had too much in service, it was quite a pain in the butt to take up slack through a rack that had already been reeved, not to mention the ever present possibility of inadvertently dropping a bar out. With the MPD, you just pull the slack out through the device like you were pulling rope up through a pulley.

An example of complex operation simplified by the might be using an MPD with one of the Doortex configurations. Could it be done with “Old School” methods? Sure. But I think the difficulty involved would have prevented us from ever attempting the Doortex in the first place. The MPD just makes everything easier and allows more complex ideas to flow a little more naturally. Things can then be reverse engineered to work with older equipment.

The argument that using the MPD diminishes basic skills like tying and using a load release hitch, reeving a rack, and converting from a lower to a raise does have some merit,. However, I think it is easier for people to grasp the big picture of rope rescue with an MPD. The finer points and techniques can come later. With a limited teaching and operating time, I think it only makes good sense to start with the MPD.

Anyhow, here is the latest from CMC. Around the 8:00 mark is a really slick way to convert from a 3:1 to a 5:1 that I had never seen before. I tried it the other day and it works great. Enjoy!

Enrollment is now open for our Modern Technologies in Rope Rescue. The class will be held March 30 and 31 at the Lancaster County Public Service Training Center in Lancaster County, PA at a cost of $280 per student.

This class covers multiple versions of the bowline along with some pretty god reasons to consider them, several uses of the AZTEK kit, a thorough introduction to the Two Tension Rope System concept with the MPD, and the use of the Arizona Vortex Artificial High Directional in some pretty typical urban setup configurations as well as some Rescue 2 Training exclusive uses of it in a few of the Appalachian Doortex configurations.

Below are some pictures from the last MTRR class in Lancaster. It was during this class that the Appalachian Flagpole was developed. The AF is designed to create a high point for grain silo rescue while not having to rely on the lightweight roof for support. A couple of the pictures show its first inception. The picture of the AF with the an MPD attached to the A frame head (next to the conex boxes) is where it is currently at. It is another high directional/anchor combo.

If you’re interested in seeing what’s on the cutting edge of rope rescue equipment and techniques, contact Kelly to reserve a spot in this popular class. Call 240-462-6610 or send an email to rescue-2@comcast.net

open enrollment March 2013

IMG_1219 IMG_1223 IMG_1233 IMG_1234 IMG_1235 IMG_1236 IMG_1238 IMG_1239 IMG_1241 IMG_1243 IMG_1247 IMG_1250 IMG_1265 IMG_1123 IMG_1109 IMG_1103 IMG_1122

Another one off the front page of Statter911 is this video that redefines the Kickoff Pickoff. While the previous coverage HERE actually showed people getting kicked backwards into the structure, the video below is of the fire department’s lead off kicker on the kickball team trying his hand, foot actually, at technical rescue. Perhaps the speediest method ever of getting the victim safely to ground.

http://www.youtube.com/watch?v=VhSlSHQvfVk&feature=player_embedded

Well, if too fast is bad ,then slower should be better right? I’m not so sure in this case. The rescuer looks to be rappeling on a figure 8 descender with some sort of autoblock, so he can go hands free if he needs to. Not a bad thought. The trouble comes from clearly not being comfortable using the autoblock. It causes him to start and stop suddenly a couple of times. Worst of all is that he overshoots the target because of it. If you’re taking yourself down a rope, it ain’t a bad idea to have a way to get yourself back up.

Do you equip your team with the equipment and knowledge to quickly switch to ascent should they need it while on rappel?

It wasn’t a huge issue here, but it could have a lot worse.

http://www.youtube.com/watch?v=A11QlQ3V6hw

Near Olympia, WA a man was rescued after falling approximately 30′ down a well into waist high standing water. Good heads up by the rescue team when they threw him a PFD to help keep him from drowning into water of an undetermined depth. Note also, the presence of well known volunteer Batt. Chief Andy Speier of the technical rescue team.

A local press release:

THURSTON COUNTY TEAM RESCUES MAN FROM WELL

Shortly after 10:30 this morning, members of the Thurston County Special Operations Rescue Team (SORT) assisted Mason County Fire District #4 in the rescue of a man that had fallen into an abandoned well at a residence located in the 300 block of SE Arcadia Road near Shelton. According to Andy Speier, Battalion Chief with the McLane Black Lake Fire Department, the man was in the process of demolishing a shed and was standing on what he believed was a four foot deep sump when the earth gave way, plunging him 35 feet down the well into deep water. First responders from Mason County Fire District #4 and the Sheriff’s office were able to successfully lower a floatation device and protective clothing to the man who was treading water to stay afloat.

According to Speier, “With the rescue team in place, Lt. Mark Schreck of the Olympia Fire Department was lowered into the well to prepare the victim to be hoisted back to the surface”. “Once secured in a harness, the man was then hauled up and out of the well”. While the patient was wet and cold, he appeared to be uninjured from the fall.

Technical rescue trained firefighters from Mclane Black Lake, Olympia, East Olympia, Lacey and Tumwater Fire Departments assisted in the rescue.

 

[brightcove vid=2081848354001&exp3=836564316001&surl=http://c.brightcove.com/services&pubid=309144709001&pk=AQ~~,AAAAR_p154k~,Ay3i1IziTki8aMdGaY0jFtvV8ga6DiJN&w=615&h=392]

wellrescue1

wellrescue2

wellrescue3

 

Thanks once again to Mike Forbes for the heads up on this.

 

 

 

Roughly translated from the ancient Nordic from which it derives, it means: a polytribal gathering of rescue people. Okay… That might be a bit of creative license. IKAR stands for the International Council for Rescue and is located in Switzerland. You can find their website HERE.

Check out the full length review of what happened at this year’s IKAR meeting in Poland. One of the neat things that stood out to me was the team from Tyrol, which does around 2000 calls annually, was using 8mm Spectra ropes. They’re ultra static and have around a 7000lb breaking strength. As you can see and hear in the video, you can’t put a knot in it and all terminations have to be spliced. Apparently it works for them, though.

Thanks to Spokane FD tillerman, rope geek, family man, and all around nice guy Mike Forbes for alerting us to this video.

While we’re on a highline kick, check out some footage from this year’s IKAR (International Council of Alpine Rescue) in Poland . If you think that you have some pretty good rope mojo, check out the video below of a highline to highline transfer of a packaged victim after they did a counterbalance raise for the vertical control line.Talk about some great line management and setup to be able to accomplish this. Go to the 2:50 mark to get to the rope stuff.

Yeah, baby!

powersteeth

The 5:00 mark of THIS video shows how they got the trackline across. Looks like I found a legitimate excuse to buy a crossbow!

If you ever find yourself in the country of Peru and are offered a ride on highline, it might be in your best interest to politely decline. If the trackline failure that we posted a while ago HERE doesn’t convince you, perhaps the videos below will.

The first video of this event shows the accident and subsequent recovery of the victim. It is interesting to see how the highline started up through a piece of metal that was used as a high directional. A little ways into the video you can see that the HD collapsed at some point, but you don’t see where.

http://www.youtube.com/watch?v=PVTdpbUBjSE

This second video shows a different viewpoint that shows the HD failing right after the rescue package hits the lines; my guess is from the shock (not intended as a pun, but I suppose it is anyhow) loading. Also of note is what appears to be a multi (20!) point anchor that looks like it just goes to a bunch of guys holding each point. Pause the video around the :14 mark to see what I’m talking about.

http://www.youtube.com/watch?v=Ngr8DbOxkO0

Three points to note:

They were lowering the rescue package VERY fast and probably could not have communicated the “Stop” command in time, even if they saw the issue coming.

There was no horizontal control line for the down hill side. It wouldn’t have made a difference here, but there seems to be a lack of highline knowledge in Peru.

The people who set this trackline up apparently had no idea how to calculate the sag in their trackline that was needed to clear objects in their path and maintain a safe number on their (obviously) sketchy anchors and high directionals.

Does your team have the ability to calculate sag before setting up your trackline or is it a calibrated eyeball and more trackline tension that you rely on?

This post was originally published in Dec of 2012. After switching servers we lost the video and some of the pictures.  We’ve recently found them again and wanted to repost this for the many people who contacted us during the past 4.5 years asking about it. Enjoy.

 

During our most recent “New Technologies” class in Lancaster, PA, we we were posed with the scenario of how to create a high point and system for rescue from grain silos. It was explained to us that the flimsyness of a roof on a silo doesn’t exactly inspire confidence to operate on. Not to mention that there aren’t that many anchors up there.

After thinking on it for a bit, we were able to come up with what basically amounts to a gin pole lashed to the interior ladder and rising up above the top of the silo, much like a flagpole. So we called it the Appalachian Flag Pole (naturally).

After searching around for a while after class, it appears we were not the first people to figure out the AF. The cell tower industry uses this sort of thing to raise sections of their towers. They just call it a gin pole…BORING.  As far I can tell, nobody has tried this as a rescue technique.

Boring Gin Pole:

cell gin

The basic setup of the Appalachian Flag Pole consists of lashing a few sections of an Arizona Vortex to the interior ladder of the silo. With about 3 feet of it sticking up above the top of the structure. Yes, it is unsupported, but there is not a lot of bending force on the top of the AFP. The resultant force is pretty much straight down the leg, with the force being transferred to the ladder.

Version 1 of the of the AFP had the haul system attached to the orange head, which is at the bottom of the AFP and lashed to the ladder, with a change of direction at the top of the AFP and the rope going back down to the victim.

IMG_1216

IMG_1224

It worked well, but required a lot of resets.

So, while working with Collin Moon and the guys from Elevated Safety in Chicago, we were able to refine the technique by attaching out MPD to the top of the AFP and do a counter balance raise. We also figured out that we could the blue AZV head for out top anchor point instead of a foot. And when Rock Exotica comes out with the 720 head…watch out!

Check out the video below to see the AFP in action. A couple of things to keep in mind: Where the camera is filming from would actually be the outside of the silo. Collin is the rescuer in this case; the victim outweighs him by a good 50lbs and he was still able to easily accomplish the task. This only happens when the rescuer hauls upwards on the victims line while simultaneously sitting down on the counterbalance line. Lastly, after the victim is out of the hole at the top (the metal grating in this case) they can be pushed to the outside of the silo and lowered with the MPD. If the video below is taking too long to load, CLICK HERE for the video on Youtube. Take a peak:

There are some urban applications that we believe the APF would excel at and will post the results when we complete the testing on it. It is our belief that it can be used successfully in the urban setting, such as the chimney in the picture below, where a man suffered a fatal fall into the chimney while attempting to take pictures. This happened in Chicago on 12/13. Article Here

CT Intercontinental00003.JPG

If you have any thoughts or comments, feel free to leave them or to contact me at kelly@rescue2training.com.  Enjoy!

This dramatic highline failure in Lima, Peru looks like somebody tried to go bungee jumping while attached to a Stokes basket loaded with a (previously) uninjured victim.

A couple of points to note:

Just before the track line snaps, you can see the carriage kind of “chugging” along down the line, indicating that something is binding up somewhere. One thought is that the control line used to lower the rescue package down the trackline is on the downhill side of the carriage, which would cause the side cheeks of the pulley to dig into the rope until there was enough force to cause the pulley to move down the rope a bit before binding up again. Hence the chugging motion.

The tension on the trackline seems to be way too tight. While it is a sloping highline, there seems to be very little sag, which would indicate that the trackline was too tight and easily susceptible to being cut by something…like, say, a pulley that is loaded sideways.

There is no horizontal control line on the downhill side. When the basket falls, there is a substantial fall distance as well as one hell of a swing fall at the bottom of the ride. When the basket reaches the bottom of its arc, it starts to swing back up again, only to be stopped by  the second floor walkway, which I’m sure did quite a number on the rope.

Had there been a lower horizontal control line, the total fall distance would most likely have been less, and the swing fall most certainly would have been all but eliminated.

Despite all of those things, the system still kept the load from hitting the ground. Not a ringing endorsement, but it does give you an idea of strong our equipment actually is.

I’d seen this video before, but Matt Hunt from Sterling Rope passed along a facebook link to it that caused me to search for a linkable version of it. Thanks for bringing it back to the forefront, Matt.

http://www.youtube.com/watch?v=unF2shRE2KY

And just for kicks, here is a dramatic presentation of what happens when there is not enough sag in the system between your anchors. It’s a good showing of the load pulling the anchors towards each other:

anchor failure

A pig and a dog walk into … Sounds like the beginning of a bad joke doesn’t it? Really, it’s just the start of a bad day for two animal owners.

Some people like ham during the holidays, this pig in Colorado wanted no part of that family tradition and attempted to bury himself to get away from ending up on the family table. Thankfully, the local FD was on hand to make sure this giant hog didn’t stay in his makeshift hole for too long.

In all seriousness though, how would you have handled this incident had the pig not been able to assist in is own rescue. My initial thought would be to wrap a salvage cover and some large ratchet straps under his belly to make a sling, which could be rigged to a raising system. As for a high point… maybe a couple of ground ladders lashed together at the tip and a block and tackle attached? I’d love to hear your thoughts on it. Click on the “comment” button (above or below the post, depends on how you’re viewing it). Thanks to Statter911 for making us aware of this one.

In another animal related story, a dog fell down what is believed to be an airshaft for an abandoned mine. The shaft is roughly 150′ deep. The dog was uninjured in the fall and happy as heck to see his owner upon surfacing, naturally. The dogs owner also seems genuinely appreciative of the rope team’s work.

Make sure you click on the link ti the photo gallery to the left of the article. One of the pictures there shows the opening to the hole. It definitely looks like a pretty dangerous opening, with lots of debris ready to fall down the hole. A good high point looks like it would almost be mandatory, so your ropes wouldn’t be rubbing on the edge.

http://newsitem.com/news/kulpmont-couple-is-grateful-for-rescuers-who-saved-dog-from-150-foot-hole-1.1407105